
Energy Supply Systems

SINGLE POLE INSULATED CONDUCTOR RAIL

25 - 400 amps

TABLE OF CONTENTS

	Page
DESCRIPTION	1
REGULATIONS	2
TECHNICAL DATA PROGRAMME 812	3
LAYOUT AND SELECTION	4- 7
PARTS OF THE CONDUCTOR RAIL SYSTEM Insulated Conductor Rails Rail Connector Anchor Clamp Hanger Clamp Power Feed Cable Lug Expansion Joint	8-21 8-10 11 11 12 13 13 14-15
Current Collectors Installation Examples Non-Interchangeability of Earth Collector Drilling Device	21
Pick-up Guide Air Gap Isolating Section Insulating Section End Cap	22 23 24

	Page
ACCESSORIES	25-30
Support Arm	25
Weld-on Bracket	25
Support Arm	26
Weld-on Bracket	26
Girder Clip	27
Towing Arm	27
Insulators	28
Bending Device	29
Spring Steel Insert	29
Cutting Blade	29
Mounting Jig	30
Conductive Grease	30
SPARE PARTS	30-31
Collector Shoe	30-31
Stabilizing Spring	31
Connection Cable	31
	100 DE
DE-ICING SYSTEM	32-36
Temperature Control Unit	34
Heating Wire	34
Terminal Box	35
End Cap	35
Support Plate	36
Order Example	36
SYSTEM ARRANGEMENT	37
CONDUCTOR RAIL ARRANGEMENT	38
QUESTIONNAIRE	39
PROGRAMME 812 IN USE	40-41
ADDITIONS TO THE wampfler-CONDUCTOR RAIL SYSTEMS	42-44

Coal loading crane in a steam power station in Stuttgart's Neckarhafen.

Neither informations nor drawings to be reproduced without our prior permission.

All data subject to engineering change.

DESCRIPTION

PROGRAMME 812

The wampfler conductor rail system, programme 812, is a modern power supply system using single-pole insulated conductor rails. It complies with the latest regulations and provides the electric energy supply for mobile consumers.

The usual applications of this conductor rail programme are travelling cranes, loading bridges, units for container traffic, people mover systems and special installations. The system 812 is used for installations with a medium energy consumption.

The conductor rail material is copper (250 Amps and 400 Amps nominal current), aluminium (200 Amps and 320 Amps nominal current), steel (80 Amps and 140 Amps nominal current) and stainless steel (25 Amps nominal current). The aluminium conductor rail is provided with a proven and patented stainless steel contact surface. Any numbers of poles can be installed vertically or horizontally, on straight or curved systems.

The conductor rail system can be installed indoor or outdoor. For extreme environmental conditions the system can be equipped with a heating system, mushroom insulators or stainless steel components.

Note: In aggressive environmental conditions e.g. galvanizing or pickling plants etc., please forward details so that we can make an offer.

For high temperature conditions, a high temperature insulation cover up to +85°C is available. Generally, the insulation cover is 80 mm shorter than the length of the rail.

The entire conductor rail system is insulated to current Safety Regulations, it is entirely protected against direct contact. The earth insulation cover is marked yellow-green on both sides over the entire length of the rail.

The spring operated insulated collectors can accommodate vertical/horizontal misalignment and are available in single or double versions. Collectors can be supplied for use in vertical or horizontal applications and for discontinuous systems. The earth collector is colour identified and not interchangeable with a phase collector.

Installation of the conductor rail system is simple; maintenance is confined to a routine check of the collectors. Collector shoes can be changed quickly and safely.

People mover system operating during the World Fair in Vancouver.

Please answer complete by the questionary – in this catalogue – and attach it to your enquiry.

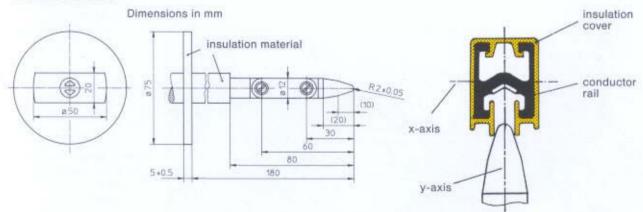
REGULATIONS

The design of the system is based on the following regulations:

- 1. Protection against direct contact to DIN 57470 part 1 / VDE 0470 part 1 (IEC-testfinger) and DIN 57100 part 410 5.2.1/5.3 / VDE 0100 part 410 (protection class IP 23 to IEC 529), also DIN/VDE 0100 part 726 / 4.2
- 2. Protection against accidental interchanging of phase and earth collector to VDE 0100 part 726/ 4.1
- 3. Current carrying capacity to DIN 43670 and DIN 43671 for coated conductors (insulated conductor rails)
- 4. Surface creepage distance to VDE 0100 part 726 / 4.4
- 5. Surface creepage distance VDE 0110 part 1 01.89 table 4

			Standard insulation	High temperature insulation
6.	Surface creepage resistance	DIN 53480/VDE 0303 T1	KC>600 V (CTI)	KC 500 V (CTI)
7.	Dielectric strength	DIN 53481	22,4 kV/mm	50 kV/mm
8.	Surface resistance	DIN 53482	10 ¹³ Ω	5,2 x 10 ¹³ Ω
9.	Specific resistance	DIN 53482	dry 8 x 10 ¹⁵ Ω cm wet 2 x 10 ¹⁵ Ω cm	dry 1,4 x 10 ¹ ⁴ Ω cm
10.	Combustibility of insulation cov at 3 mm a. 1,5 mm thickness	er to UL 94	V - 0	V - 0

11. Chemical resistance


The materials of the conductor rail systems are weather-resisting and have a very good chemical resistance. For special applications please contact us. Use solvents and contact sprays with utmost caution.

> Test of protection against direct contact

by IEC-testfinger

TEST INSTRUMENTS AND PROCEDURES TO DIN 57470 PART 1 / VDE 0470 PART 1

IEC-TESTFINGER

Similar or identical regulations are applicable in:

AUS: AS 1939

CEI 05515 and 09414

CH:

SEV 3428 SN 411079 NL: **NEN 2438**

NEN 10034-5

F:

NF C 20-010

NF EN 60034-5

SS IEC 529

NF C 51-115

USA: UL inspection-no. E 99342

GB: BS 5490

The wampfler-insulated conductor rail system is entirely safe to International Safety Regulations, even at maximum operating temperature.

TECHNICAL DATA

PROGRAMME 812

Conductor rail system		PROGRAMME 812										
Conductor rail		Galvaniz	ed Steel	700 000000 000000	ss steel t insert	Cor	per	Stainless Steel				
Туре		081211	081212	081213	081214	081215	081216	081217				
Nominal current at 100 % DC and 35°C	[A]	80	140	200	320	250	400	25				
D.C. resistance at +35°C at +20°C	[Ω/m] [Ω/m]	0,002184 0,002061	0,00147 0,00138	0,000358 0,000337	0,000282 0,000267	0,000298 0,000278	0,000178 0,000168	0,01163 0,01159				
Impedance at 50 mm rail spacing and +35°C and +20°C	[Ω/m] [Ω/m]	0,002190 0,002060	0,00149 0,00139	0,000377 0,000361	0,000306 0,000297	0,000321 0,000307	0,000217 0,000209	0,01163 0,01160				
Moment of Inertia	/ _x [cm ⁴] / _y [cm ⁴]	0,232 0,251	0,340 0,390	0,232 0,281	0,307 0,281	0,232 0,251	0,340 0,390	0,232 0,251				
Moment of resistance	W _x [cm ³] W _y [cm ³]	0,207 0,322	0,310 0,500	0,240 0,373	0,240 0,373	0,207 0,322	0,310 0,500	0,207 0,322				
Voltage grade*	[v]		660 *									
Support spacing	[m]		1,5									
Rail length	[mm]		4000									
Outside dimensions	[mm]		18×26									
Travelling speed	[m/min]		600 max.									
Expansion joint			not required	up to 200 m	installation	length						
Permissible ambient temperature			-30°C +1 -30°C +1	55°C (Standa 85°C (high te	ard insulatio	n)) nsulation))	other temp					
Protection against direct contact			and DIN 57	470 part 1 / 100 part 410 DE 0100 part	0 5.2.1/5.3 /	art 1 VDE 0100 pa	rt 410					
Breakdown voltage			DIN 53			andard insul	ation cover) re insulation	cover)				

If installations are exposed to dirt, high humidity or conductive dust additional insulators have to be used.
 Special insulators are available for installations over 1000 V. Please contact us.

Conductor rail system tested for short-circuit strength at the research institute of high voltage and high amperage technology in Mannheim. Test procedure shot with a high-speed camera (3000 pictures/sec.).

Test installation at SIEMENS for the transmission of data and telephone signals.

LAYOUT AND SELECTION

1. NOMINAL CURRENTS AND STARTING CURRENTS OF MOTORS

Table 1

Mo	tor		Direct c	urrent /N				TI	ree pha	se curre	nt ²		
nomina	power	115 V	230 V	400 V	660 V	23	0 V	40	0 V	55	0 V	66	0 V
PS	kW	Α	A	A	A		A	- 1	4		A	,	Ą
						IN	IA1	IN	IA^{\dagger}	In	IA^{\dagger}	In	IA [†]
1	0,75	9,2	4,6	2,3	1,68	3,4	16,32	1,95	9,36	1,4	7.1	1,12	5,37
1,5	1,10	13,5	6,8	3,37	2,46	4,8	24,0	2,8	14,0	2,1	10,5	1,6	8,0
2	1,50	17,2	8,7	4,4	3,4	6,4	32,5	3,7	18,5	2,8	14,0	2,1	10,5
3	2,20	27,0	13,3	6,7	4,8	9,0	49,5	5,2	28,6	4,0	22,0	3,0	16,5
4	3,0	34	17	8,5	6,3	12,1	76,6	7,0	42,0	5,3	31,8	4,0	24,0
5,5	4,0	45	22	11,0	8,2	15,2	91,2	8,8	52,8	6,7	40,2	5,1	30,6
7,5	5,5	61	30	15,5	11,0	20,2	141,4	11,7	81,9	8,9	62,3	6,7	46,9
10	7,5	82	41	21,0	15,5	27,0	170,1	15,6	98,28	11,9	74,97	9,0	56,7
15	11	120	60	30	21,5	38	247	22	143,0	16,7	108,55	12,6	81,9
20	15	160	81	41	30	50	325	29	188,5	22,0	143,0	16,7	108,5
25	18,5	195	97	49	37	66	423	38	243,2	29,0	185,6	22,0	140,8
30	22	232	116	58	43	78	491	45	288	34	218	26	166,4
40	30	315	155	78	58	104	666	60	384	46	294	35	224,0
50	37	384	190	96	70	124	794	72	460	55	347	41	262,4
60	45	462	230	116	84	150	960	87	557	66	422	50	320
75	55	-	282	140	102	180	-	104	665	79	505	60	384
100	75	π	380	190	139	245	-	142	-	108	-	82	-
125	90	-	-	225	160	290	-	168	-	128	=	97	2
150	110	= ,	=	277	205	354	-	205	-	156	-	118	=
180	132	=	-	330	254	423	-	245	4	186	-	141	-

IN = nominal current)

without regard to the cos @-values /A1 = starting current

2. CALCULATION OF CURRENT CARRYING CAPACITY OF CONDUCTOR RAILS

2.1 Determination of the total nominal current 'ING'

for the selection of conductor rails

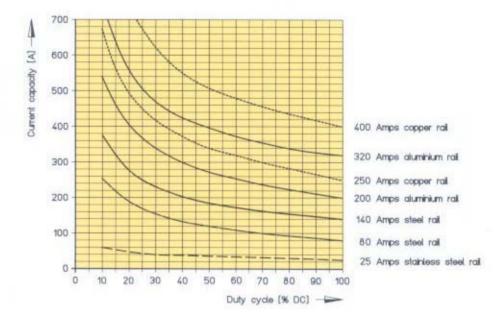
The amperages of the motors marked with 'x' from table 2 must be added to the output data of the installation to obtain the total nominal current 'I NG' $\Sigma I_N = I_{NG}$

Table 2

Number of cranes per System	/ N of the largest motor of all cranes / N*	In of the second largest motor of all cranes	In of the third largest motor of all cranes In*	In of the fourth largest motor of all cranes
1	×	×		
2	×	×	X	
3	×	×	×	
4	×	×	×	X
5	×	×	×	×
Tandem operation of two cranes	×	×	×	×

^{* =} on dual drives respective 2 · I N

⁼ the starting currents are for standard squirrel-cage motors 1500 r.p.m. Starting currents for slip ring motors or special-cage motor take manufacturers data.


⁼ For nominal currents of motors with voltages not listed use the manufacturers data or increase/decrease the listed current figure accordingly.

2.2 Conductor rating in relation to the duty cycle 'DC' at 35 °C ambient temperature

The total nominal current 'ING' is marked on in diagram 1 corresponding to the required duty cycle. The type of conductor rail is selected whose curve is at or above the point marked.

The admissible current capacity ${}^{1}I_{rall perm, 35}^{\circ}$ of the selected conductor rail is taken from diagram 1 and is reduced according to section 2.3 if the temperature is higher than $+35^{\circ}$ C.

2.3 Reduction of current carrying capacity by increased ambient temperature

If the ambient temperature is higher than 35° C, the current carrying capacity of the selected conductor rail must be reduced by factor ' f_A ' from table 3 to obtain the permissible current carrying capacity for the respective ambient temperature ' I_{rail} ϑ perm.'.

$$I \ {\rm rail} \ \partial \ {\rm perm.} = I \ {\rm rail} \ {\rm perm.} \ 35^{\rm o} {\rm C} \cdot f {\rm A}$$

Table 3
Current capacity factors for different ambient temperatures

Ami	pient temperature		35°C	40°C	45° C	50°C	55°C	60°C	65°C	70°C	75°C	80° C	85° C
CHARLES THE	Steel rail		1.0	0.97	0.94	0.91	0.88						
Standard insulation	Aluminium rail	†A	1.0	0.92	0.81	0.76	0.68						
Troumation.	Copper rail		1.0	0.93	0.87	0.82	0.78						
High	Steel rail						1.0	0.97	0.94	0.91	0.88	0.85	0.83
temperature	Aluminium rail	f A					1.0	0.92	0.81	0.76	0.68	0.63	0.59
insulation	Copper rail						1.0	0.93	0.87	0.82	0.78	0.74	0.72

The selected conductor rail can be used if the permissible current capacity ${}^{\prime}I_{\text{rail}} \partial_{\text{perm.}}$ of the conductor rail is still equal or bigger than the total nominal current ${}^{\prime}I_{\text{NG}}$ in spite of the reduction by increased ambient temperature.

The selected conductor rail can be used if the following is applicable:

I rall Ø perm. ≥ I NG

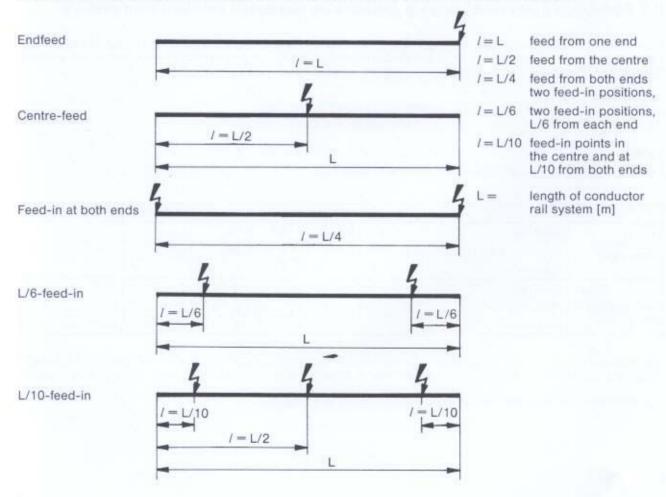
3. DETERMINATION OF THE VOLTAGE DROP 'AU'

The voltage drop of the conductor rail is normally between 2,5 % and 5 % U N. It must be calculated for every installation.

3.1 Determination of the total current 'I g' for calculation of the voltage drop

To calculate the total current $I_{\rm G}$ the single starting currents as well as the nominal currents must be added according to table 4.

 $\Sigma I_A \cdot \cos \varphi_A + \Sigma I_N \cdot \cos \varphi_N = I_G$


Table 4

Number of cranes	I A of the largest motor of all cranes	/ A or / N of the second largest motor of all cranes		/ n of the third largest motor of all cranes	In of the fourth largest motor of all cranes
	IA* · cos φA	IA* · COS φA	In*-cos φn	In* - cos ψN	In*-cos φn
1	×		×		
2	×		×	×	
3	×	×			
4	×	×		×	
5	×	- ×		×	×
Tandem operation of two cranes	×	×		×	×

^{× =} this motor (drive) must be considered

3.2 Selection of feed-in points

The feed-in point for every application must be selected because the length 'I' between power feed and conductor rail end is used for calculating the voltage drop. Following feed-in points can normally be used:

⁼ on dual drives respective 2 · IA or 2 · IN

3.3 Voltage drop formulas (ΔU)

If the total current 'I's' and the length 'I' are determined the values of impedance and resistance can be taken from table 'Technical Data of Programme 812' for the conductor rail selected by calculating the current carrying capacity in section 2. This data is used in the following formulas.

For direct current:	ΔU 35°c = 2 · I · I G · R [V]	$\Delta U_{35^{\circ}C} = \text{Voltage drop at } 35^{\circ}C$ [V] $I_{G} = \text{Total current}$ [A]
For alternating current:	ΔU 35°C = 2 · l · l G · Z [V]	P — Posistance of conductor (O/m)
For three phase current:	ΔU 35°C = $\sqrt{3} \cdot I \cdot I$ G · Z [V]	/ = feeder length [m] L = system length [m]

If the voltage drop is to be calculated at an ambient temperature of +20° C the corresponding values of impedance and resistance can be taken from 'Technical Data Programme 812'.

3.4 Voltage drop rise $\Delta U \vartheta$ at higher ambient temperature

If the average ambient temperature is higher than + 35°C the voltage drop is to be calculated using the following formulas:

$$\Delta U \vartheta = \frac{\Delta U_{35^{\circ}C}}{f_{v}} \qquad [V] \qquad \Delta U \vartheta = \text{voltage drop at higher ambient temperatures than } + 35^{\circ}C \qquad [V] \\ \Delta U \vartheta = \text{voltage drop at higher ambient temperatures than } + 35^{\circ}C \qquad [\%] \\ \Delta U \vartheta = \text{nominal voltage} \qquad [V] \\ V_{N} = \text{nominal voltage} \qquad [V]$$

To determine the factor 'fv' first the operating temperature 'ϑoτ' must be calculated.

$$\hat{\vartheta} \text{ or } = \partial \text{ AT} + \Delta \, \hat{\vartheta} \text{ ch} = \hat{\vartheta} \text{ AT} + 30 \, [^{\circ}\text{C}]$$

$$\hat{\vartheta} \text{ or } = \text{operating temperature} \qquad [^{\circ}\text{C}]$$

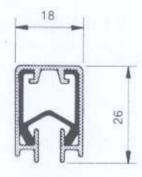
$$\hat{\vartheta} \text{ AT} = \text{ambient temperature} \qquad [^{\circ}\text{C}]$$

$$\Delta \, \hat{\vartheta} \text{ ch} = \text{temperature increase by current heating} \qquad [^{\circ}\text{C}]$$
(is to be used constantly + 30° C)

The factor 'fv' must be taken from table 5 according to the operating temperature and the selected conductor rail.

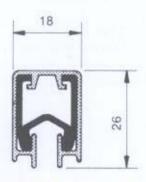
Table 5
Correction factors 'fν' for the voltage drop 'ΔU' at different ambient temperatures

Aı	mbient temperature			35°C	40°C	45°C	50°C	55°C	60°C	65°C	70°C	75°C	80°C	85°0
Ор	erating temperature			65°C	70°C	75°C	80°C	85°C	90°C	95°C	100°C	105°C	110°C	115°
	Steel rail	80 A	A	0.898	0.884	0.869	0.855	0.842						
	Steel rail	140 A		0.899	0.884	0.870	0.856	0.842						
***************************************	Aluminium rail	200 A		0.916	0.904	0.891	0.879	0.868						
Standard insulation	Aluminium rail	320 A	fv	0.921	0.909	0.897	0.886	0.875						
modernm	Copper rail	250 A		0.912	0.899	0.887	0.874	0.862						
	Copper rail	400 A		0.927	0.916	0.905	0.894	0.883						
	Stainless steel rail	25 A		0.993	0.991	0.990	0.989	0.988						
	Steel rail	80 A						0.842	0.828	0.816	0.804	0.791	0.780	0.76
	Steel rail	140 A						0.842	0.829	0.817	0.805	0.793	0.781	0.77
High	Aluminium rail	200 A						0.868	0.856	0.845	0.834	0.824	0.813	0.80
temperature	Aluminium rail	320 A	fv.					0.875	0.864	0.853	0.843	0.833	0.822	0.8
insulation Copper rail	250 A						0.862	0.850	0.838	0.827	0.816	0.805	0.79	
	Copper rail	400 A						0.883	0.873	0.863	0.853	0.843	0.833	0.82
	Stainless steel rail	25 A						0.988	0.986	0.986	0.985	0.984	0.982	0.98


If the voltage drop is too high the number of power feeds must be increased or a larger type of conductor rail must be selected.

PARTS OF THE CONDUCTOR RAIL SYSTEM

INSULATED CONDUCTOR RAILS

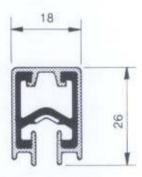

STEEL RAIL zinc galvanized, with insulation cover standard length 4 m other lengths on request

Steel Rail 081211 80 Amps

Type	Orde	Length	Weight		
1.595%	phase conductor	earth conductor	[m]	[kg] 2,500	
Steel Rail with standard insulation	081211-4×11	081211-4×12	4		
Steel Rail with high temperature insulation	081211-4x21	081211-4×22	4	2,500	

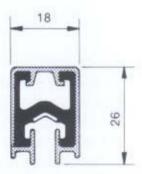
Steel Rail 081212 140 Amps

Type	Orde	Length	Weight	
1700	phase conductor	earth conductor	[m]	[kg]
Steel Rail with standard insulation	081212-4×11	081212-4×12	4	3,750
Steel Rail with high temperature insulation	081212-4×21	081212-4×22	4	3,750


The earth insulation cover is marked yellow-green on both sides.

Standard insulation suitable from -30° C to +55° C ambient temperature other temperatures on request

ALUMINIUM RAIL

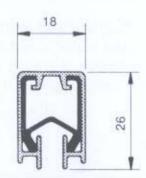

sea water resistant, with stainless steel sliding strip and insulation cover standard length 4 m other lengths on request

Aluminium Rail 081213 200 Amps

Type	Orde	Length	Weight	
1300	phase conductor	earth conductor	[m]	[kg]
Aluminium Rail with standard insulation	081213-4×11	081213-4×12	4	1,700
Aluminium Rail with high temperature insulation	081213-4×21	081213-4×22	4	1,700

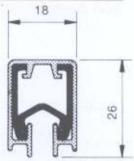
Aluminium Rail 081214 320 Amps

Type	Orde	Length	Weight	
1300	phase conductor	earth conductor	[m]	[kg]
Aluminium Rail with standard insulation	081214-4×11	081214-4×12	4	1,800
Aluminium Rail with high temperature insulation	081214-4×21	081214-4×22	4	1,800


The earth insulation cover is marked yellow-green on both sides.

Standard insulation suitable from -30°C to +55°C ambient temperature other temperatures on request

On long travel installations using aluminium rails for ship loaders or unloaders, grabbing cranes, handling bulk systems etc. or machinery which is operating for long periods in a stationary position under full load the current collector should be rated at 50% of the specified continuous current rating. Please ask for further information.


COPPER RAIL with insulation cover Standard length 4 m other lengths on request

Copper Rail 081215 250 Amps

Type	Orde	Length	Weight	
1300	phase conductor	earth conductor	[m]	[kg]
Copper Rail with standard insulation	081215-4×11	081215-4×12	4	2,700
Copper Rail with high temperature insulation	081215-4×21	081215-4×22	4	2,700

Copper Rail 081216 400 Amps

Type	Orde	Length	Weight	
1300	phase conductor	earth conductor	[m]	[kg]
Copper Rail with standard insulation	081216-4×11	081216-4×12	4	4,100
Copper Rail with high temperature insulation	081216-4×21	081216-4×22	4	4,100

STAINLESS STEEL RAIL with insulation cover standard length 4 m

to be used in aggressive environmental conditions e.g. galvanizing and pickling plants etc.

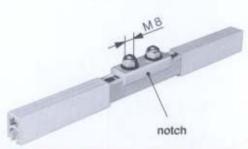
18 28

Stainless Steel Rail 081217 25 Amps

Type	Order-no phase conductor I earth conductor		Length	Weight	
	phase conductor	earth conductor	[m]	[kg]	
Stainless Steel Rail with standard insulation	081217-4×11	081217-4×12	4	2,500	
Stainless Steel Rail with high temperature insulation	081217-4×21	081217-4×22	4	2,500	

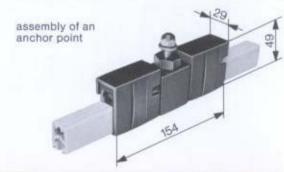
The earth insulation cover is marked yellow-green on both sides.

Standard insulation suitable from


-30°C to +55°C ambient temperature \ other temperatures

High temperature insulation suitable from −30°C to +85°C ambient temperature on request

RAIL CONNECTOR 081221


Type	Order-no			
100000	hardware galvanized	hardware stainless steel	Weight [kg]	
Rail Connector for steel and aluminium rail	081221-2	081221-4	0,140	
Rail Connector for copper rail	081221-3	081221-5		
Rail Connector for stainless steel rail		081221-6	0,180	

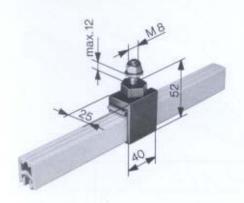
Installation hint:

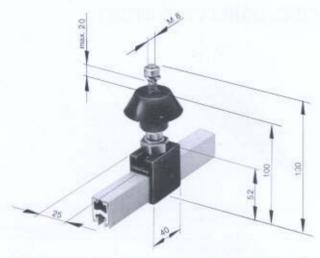
The rail connector joins adjacent conductor lengths. To guarantee proper current transfer at the joint all contact surfaces should be cleaned and covered with a thin layer of wampfler conductive grease. The conductor rails are pushed into the connector and centrally positioned using the notch in the connector. By tightening the screws both conductor rail sections are joined together (screw tightening torque: hardware galvanized Md = max. 11.3 Nm / hardware stainless steel Md = max. 9.75 Nm). Now the insulation covers which are always 80 mm shorter than the conductor rail profile are pushed towards the connector. Both halves of the connector cover are fitted to the rail and snapped together enclosing the rail joint. The joint is now protected against direct contact. Both halves of the connector cover can also be secured by self tapping screws through the external lugs.

ANCHOR CLAMP 081231

Type	Ord	er-no	Weight
192000	hardware galvanized	hardware stainless steel	[kg]
Anchor Clamp	081231 - 1	081231-2	0,050

For each anchor point two anchor clamps have to be ordered!


To guarantee the expansion of the rail in a predetermined direction the conductor rail must be fixed at one point. The anchor point should preferably be at the centre of the system. Installations of more than 200 m length have anchor points installed as diagram 3 (see section 'expansion joint').


Installation hint:

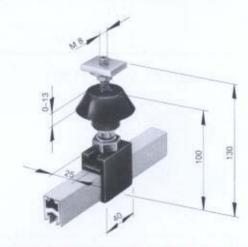
For each anchor point two anchor clamps must be fitted on either side of a hanger clamp. The anchor clamp is pushed on to the conductor rail section. By fully tightening the screws the anchor clamp is wedged onto the insulation cover and conductor rail. The fixing strips of the clamping wedges can be cut off after assembly.

HANGER CLAMP 081241

with steel nut

Type	Order-no			
OSS -	hardware galvanized	hardware stainless steel	Weight [kg]	
Insulated Hanger Clamp without insulator	081241-01	081241 - 02	0,050	
Insulated Hanger Clamp with Insulator*	081241-11	081241 – 12	0,115	

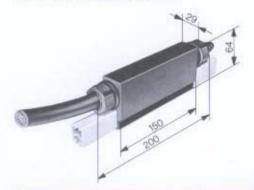
^{*} Please note the application conditions in chapter 'insulators'.


Installation hint:

The hanger clamps are fitted to wampfler or purpose made support brackets. Suspension distance 1.5 m. The nuts are tightened to a torque of Md = max. 8 Nm. Please note that the hanger clamp remains turnable. The conductor rails are clipped into the hanger clamps.

HANGER CLAMP 081243

for C-rail support arm


Type	Order-no		
	hardware galvanized	hardware stainless steel	[kg]
Insulated Hanger Clamp without insulator	081243-01	081243-02	0,095
Insulated Hanger Clamp with insulator*	081243 - 11	081243 - 12	0,160

^{*} Please note the application conditions in chapter 'insulators'.

This hanger clamp is used for C-rail support arm installation. The hanger clamp can be adjusted in height and positioned at any point along the support arm.

Installation hint: see hanger clamp 081241

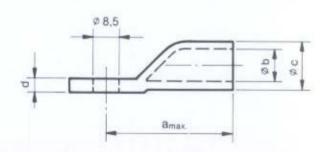
POWER FEED 081251

Cable lugs to be ordered separately

Max. cable diameter 17,5 mm.

Туре	Order-no			
	hardware galvanized	hardware stainless steel	[kg]	
Power Feed for steel and aluminium rail	081251-2	081251-4	0,210	
Power Feed for copper rail	081251 - 3	081251 - 5	0,220	
Power Feed for stainless steel rail		081251-6	0,250	

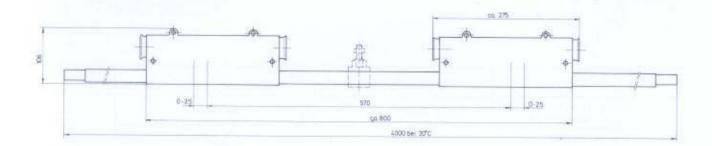
Installation hint:


The power supply is connected to the rail by the power feed. The power feed can be installed within a conductor rail section or at any rail joint. It should be installed as near as possible to the source of the incoming power. If a power feed is required within a conductor rail section, the insulation cover must be separated and 40 mm cut off on either side. Please note that a space of 200 mm must be available between power feed and hanger clamp for the expansion of the conductor rail due to temperature variation. To guarantee proper current transfer the contact surfaces should be cleaned and covered with a thin layer of **wampfler** conductive grease.

The power feed clamp is pushed into the rail. The supply cables are connected to the power feed clamp bolt and by tightening these bolts the power feed clamp is fastened to the rail electrically/mechanically (torque: hardware galvanized Md = max. 11.3 Nm / hardware stainless steel Md = max. 9.75 Nm). Both halves of the power feed cover are hooked to the rail in such a way that the internal snap lock of the cover is positioned between the bolts. The cover halves are clipped together and are joined with the cable sleeves and nuts already fitted on to the cables. If the power feed is used at a rail joint follow the procedure detailed for the rail connectors.

CABLE LUG 080051

for feeder cable



Type	Order-no	Cross section [mm ²]	a [mm]	b [mm]	c [mm]	d [mm]	Weight kg/1000
	080051-06	6	23,5	3,5	6,6	1,5	6,000
	080051 - 10	10	26,8	4,5	7,0	1,5	7,000
	080051 - 16	16	32,0	5,5	8,5	2,2	11,000
Cabla Lua	080051-25	25	32,5	7,0	10,0	2,6	14,000
Cable Lug	080051-35	35	34,0	8,5	12,0	3,5	20,000
	080051 - 50	50	40,0	10,0	14,0	3,9	32,000
	080051 - 70	70	47,0	12,0	16,6	4,6	51,000
	080051-95	95	51,0	13,5	18,0	4,6	60,000

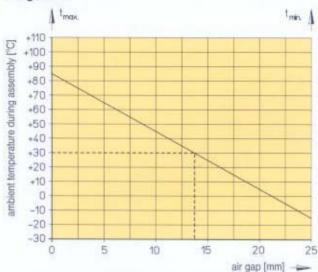
EXPANSION JOINT 081261 4 m long

for conductor rail installations over 200 m length

On installations with expansion joints double current collectors should be used.

Expansion Joint		Order-no				
with standard insulation	phase conductor hardware hardware galvanized stainless ste		earth co hardware galvanized	nductor hardware stainless steel	Weight [kg]	
for steel rail 80 - 140 A	081261-4×1111		081261-4×1112		4,600	
for aluminium rail 200 – 320 A	081261 - 4 x 1121	081261 - 4 x 2121	081261-4×1122	081261 - 4×2122	2,900	
for copper rail 250 - 400 A	081261 - 4 x 1131	081261 - 4 x 2131	081261 - 4 x 1132	081261 - 4 x 2132	4,800	
for stainless steel rail 25 A	081261 - 4 x 1141	081261-4×2141	081261-4×1142	081261-4x2142	3,600	

Expansion Joint	28	Order-no					
with high temperature insulation	phase c hardware galvanized	onductor hardware stainless steel	earth co hardware galvanized	nductor hardware stainless steel	[kg]		
for steel rail 80 – 140 A	081261 - 4 x 1211		081261 - 4 x 1212		4,600		
for aluminium rail 200 – 320 A	081261 - 4 x 1221	081261 - 4×2221	081261 - 4 x 1222	081261 - 4 x 2222	2,900		
for copper rail 250 - 400 A	081261 - 4 x 1231	081261 - 4 x 2231	081261 - 4 x 1232	081261-4×2232	4,800		
for stainless steel rail 25 A	081261 - 4x1241	081261-4×2241	081261 - 4 x 1242	081261-4×2242	3,600		


Installation hint:

The expansion section unit is supplied fully assembled in a 4 m length. With the exception of the rail connector installation no extra work is required on site. Please note, however, that the two air gaps in the expansion joint must be adjusted as per diagram 2 corresponding to the ambient temperature during assembly. The air gaps must be rechecked after fitting the anchor clamps.

AIR GAP ALLOWANCE ON EXPANSION JOINTS

Both air gaps in an expansion joint must be identical

Instructions:

t_{min} = lowest temperature that occurs in the application area.

t_{max} = highest operational temperature that occurs in the application area.

Draw a line from t_{min} to t_{max}. 1.

2 Mark the ambient temperature during operation horizontally.

3. Draw a line from the intersection vertically down and read the air gap to be set.

Example:

Temperature range from -15°C to +85°C Ambient temperature during assembly: +30°C Air gap: 14 mm

NUMBER OF EXPANSION JOINTS ON INSTALLATIONS OVER 200 m LENGTH

Expansion joints are installed at certain distances on conductor rail installations over 200 m in length (see diagram 3). On complicated installations with curves, special systems and installations with anchor points at their ends, special distances must be used. Please consult factory.

Table 6

ехра	ber of nsion nts		1			2			3			4			5			rmed length a	
Mat	erial	St	Al	Cu	St	Al	Cu	St	Al	Cu	St	Al	Сш	St	Al	Си	St	AI	Си
111111					-	To	tal len	gth of	cond	uctor	rail ins	tallatio	n [m]						
	10	400	400	400	600	600	600	800	800	800	1000	1000	1000	1200	1200	1200	200	200	200
	20	400	304	347	600	408	494	800	512	641	1000	616	788	1200	720	935	200	104	147
	30	340	270	298	480	340	396	620	410	494	760	480	592	900	550	690	140	70	98
	40	304	252	274	408	304	348	512	356	422	616	408	496	720	460	570	104	52	7.4
Δ tges	50	283	242	258	366	284	316	449	326	374	532	368	432	615	410	490	83	42	58
Δt	60	270	235	249	340	270	298	410	305	347	480	340	396	550	375	445	70	35	49
	70	260	228	242	320	256	284	380	284	326	440	312	368	500	340	410	60	28	42
	80	252	226	236	304	252	272	356	278	308	408	304	344	460	330	380	52	26	36
	90	246	223	232	292	246	264	338	269	296	384	292	328	430	315	360	46	23	32
	100	242	220	229	284	242	258	326	263	287	368	284	316	410	305	345	42	22	29

 $\Delta t_{ges} = \Delta t U + \Delta t_{sw}$

 ΔtU = ambient temperature range

 Δt_{sw} = temperature rise due to current heating

standard value for Atsw: 10°C up to 40% duty cycle

30°C up to 100% duty cycle

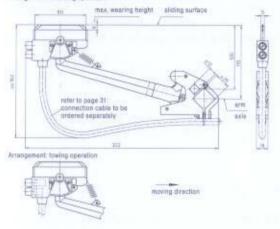
20°C up to 65% duty cycle

Diagram 3 L ≤ 200 m 4 DV 5 DV 100 m 100 m DV (expansion joint) FP (anchor clamp)

For longer installations than shown in our table:

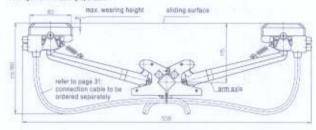
$$\frac{L-200}{a}$$
 = number of expansion joints

a (intermediate length for an expansion joint)


L (total length of conductor rail installation)

CURRENT COLLECTORS

CURRENT COLLECTOR 80 AMPS


Arrangement: reversing operation

081209-012...081209-022 081209-013...081209-023 081209-112...081209-122 081209-113...081209-123

DOUBLE **CURRENT COLLECTOR 160 AMPS**

Arrangement: reversing operation 081209 - 2x 012 ... 081209 - 2x 022 081209-2x013...081209-2x023 081209 - 2x 112 ... 081209 - 2x 122 081209 - 2x 113 ... 081209 - 2x 123

For vertical operation only: for horizontal operation on request.

TECHNICAL DATA:

Max. current load for straight and curved installations (bending radius > 1800 mm)

DC: 40 Amps)

80 Amps (for aluminium rails in stationary position at 100%

- 10 N

Max. current load for straight and curved installations (bending radius > 1800 mm)

- 160 Amps (for aluminium rails in stationary position at 100% DC: 80 Amps)

Max. travelling speed - 600 m/min; for higher speeds please consult factory

Contact pressure

Lateral movement - ± 50 mm Movement in direction of contact $- \pm 50 \text{ mm}$

Connecting cable

- 6, 10 or 16 mm2, 1,5 m long, highly flexible; longer cables on request (to be ordered separately; see page 31)

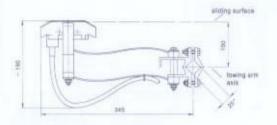
Distance between towing arm axis and conductor rail sliding surface

- 115 mm

Installation hint:

Please note that the centre line of the current collectors corresponds to the centre line of the conductor rail. The distance between towing arm and conductor rail must be set according to the dimensions shown (see installation examples).

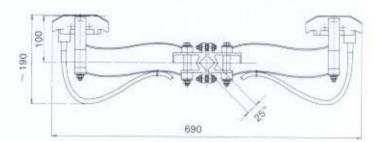
The connecting cables must be highly flexible to guarantee full operational flexibility and must be fixed with the cable holder so that no tensional stress can be transmitted to the collector head.


Execution	Operation	Orde phase	er-no.	Weight	Orde	er-no.	Weight
		80 A	umps	[kg]	160 /	Amps	[kg]
Galvanized	Reversing	081209-012	081209-022	0,300	081209-2×012	081209-2x022	0,520
our unicou	Towing	081209-013	081209-023	0,300	081209-2x013	081209-2×023	0,520
Stainless	Reversing	081209-112	081209-122	0,300	081209-2x112	081209 - 2x 122	0,520
steel	Towing	081209-113	081209-123	0,300	081209 - 2x 113	081209 - 2x 123	0,520

CURRENT COLLECTOR 100 AMPS

Spring arm typ

081201-01...081204-01 081201-11...081204-11 081201-02...081204-02


081201 - 12 ... 081204 - 12

DOUBLE CURRENT COLLECTOR

200 AMPS Spring arm type

081201 - 2x 01 ... 081204 - 2x 01 081201 - 2x 11 ... 081204 - 2x 11 081201-2x02...081204-2x02 081201 - 2x 12 ... 081204 - 2x 12

TECHNICAL DATA:

straight and curved installations (bending radius > 1800 mm)

Max. current load for curved installations (bending radius from 1000 mm - 1800 mm)

- Max. current load for 100 Amps (for aluminium rails in stationary position at 100% DC: 50 Amps)
 - 40 Amps: with special collector shoe 081001-15 (for aluminium rails in stationary position at 100 % DC: 20 Amps)

straight and curved installations (bending radius > 1800 mm)

Max. current load for curved installations (bending radius from 1000 mm - 1800 mm)

- Max, current load for 200 Amps (for aluminium rails in stationary position at 100 % DC: 100 Amps)
 - 80 Amps; with special collector shoe 081001-15 (for aluminium rails in stationary position at 100 % DC: 40 Amps)

Max. travelling speed

600 m/min; for higher speeds please consult factory

Contact pressure

- 20 N

Lateral movement

- ± 100 mm

Movement in direction of contact

- + 25 mm

Connecting cable

- 16 mm2, 1 m long, highly flexible; longer cables on request

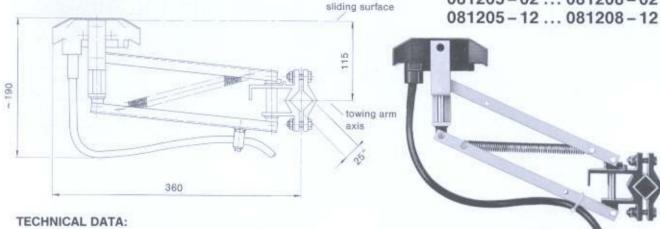
Distance between towing arm axis and conductor rail sliding surface

- 100 mm

Installation hint:

Please note that the centre line of the current collectors corresponds to the centre line of the conductor rail. The distance between towing arm and conductor rail must be set according to the dimensions shown (see installation examples).

The connecting cables must be highly flexible to guarantee full operational flexibility and must be fixed with the cable holder so that no tensional stress can be transmitted to the collector head.


Type		Orde	r-no.		Weight		Orde	r-no.		Weigh
	phase c	onductor	earth o	onductor	[kg]	phase c	onductor	earth or	onductor	[kg]
	hardware galvanized	hardware stainless steel	hardware galvenized	hardware stainless steel		hardware galvanized	hardware stainless steel	hardware galvanized	hardware stainless steel	
		100 A	mps				200 /	Amps		
Current collector vertical operation	081201-01	081201-11	081201-02	081201-12	0,800	081201-2x01	081201-2x11	81201-2x02	081201-2x12	1,600
Current collector vertical operation for transfer points*	081202-01	081202-11	081202-02	081202-12	0,850	081202-2x01	081202-2x11	81202-2x02	081202-2x12	1,700
Current collector horizontal operation	081203-01	081203-11	081203-02	081203-12	0,900	081203-2x01	081203-2x11	81203-2x02	081203~2x12	1,800
Current collector horizontal operation for transfer points*	081204-01	081204-11	081204-02	081204-12	0,950	081204-2×01	081204-2x11	81204-2x02	081204-2x12	1,900

^{*} Current collectors for transfer points are used if the conductor rail system is separated by interlocks, crossing beams etc. These current collectors are equipped with a self-centering device. For these applications pick-up guides have to be used.

CURRENT COLLECTORS 100 AMPS

Parallel arm type

081205 - 01 ... 081208 - 01 081205 - 11 ... 081208 - 11 081205 - 02 ... 081208 - 02

Max. current load for straight and curved installations (bending radius > 1800 mm) 100 Amps (for aluminium rails in staitionary position at 100 % DC: 50 Amps)

Max. current load for curved installations (bending radius from 1000 mm – 1800 mm)

(with special collector shoe 081001 – 15)

(for aluminium rails in stationary position at 100 % DC: 20 Amps)

Max. travelling speed - 600 m/min; for higher speeds please consult factory

Contact pressure - 20 N

 Contact pressure
 − 20 N

 Lateral movement
 − ± 100 mm

Movement in direction

of contact - ± 50 mm

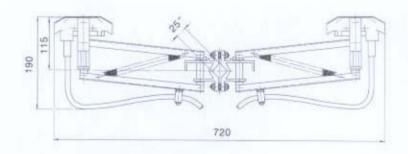
Connecting cable - 16 mm², 1 m long, highly flexible; longer cables on request

Distance between towing arm axis and conductor

rail sliding surface - 115 mm

Installation hint:

Please note that the centre line of the current collectors corresponds to the centre line of the conductor rail. The distance between towing arm and conductor rail must be set according to the dimensions shown (see installation examples).


The connecting cables must be highly flexible to guarantee full operational flexibility and must be fixed with the cable clamp so that no tensional stress can be transmitted to the collector head.

Туре	agazza a		r-no		Weight
	hardware galvanized	hardware stainless steel	hardware galvanized	hardware stainless steel	[kg]
Current Collector 100 Amps vertical operation	081205-01	081205-11	081205-02	081205 - 12	1,150
Current Collector 100 Amps vertical operation for transfer points*	081206-01	081206-11	081206-02	081206 - 12	1,260
Current Collector 100 Amps horizontal operation	081207-01	081207 - 11	081207-02	081207 - 12	1,185
Current Collector 100 Amps horizontal operation for transfer points*	081208-01	081208 - 11	081208-02	081208 - 12	1,265

^{*} Current collectors for transfer points are used if the conductor rail system is separated by interlocks, crossing beams etc. These current collectors are equipped with a self-centering device. For these applications pick-up guides have to be used.

DOUBLE CURRENT COLLECTOR 200 AMPS Parallel arm type

081205-2x01...081208-2x01 081205-2x11...081208-2x11 081205-2x02...081208-2x02 081205-2x12...081208-2x12

TECHNICAL DATA:

Max. current load for straight and curved installations (bending radius > 1800 mm) 200 Amps (for aluminium rails in stationary position at 100 % DC: 100 Amps)

Max. current load for curved installations (bending radius from 1000 mm - 1800 mm)

 80 Amps (with special collector shoe 081001 – 15) (for aluminium rails in stationary position at 100 % DC: 40 Amps)

Max. travelling speed – 600 m/min; for higher speeds please consult factory
Contact pressure – 20 N

Lateral movement – ±100 mm

Movement in direction of contact

of contact - ± 50 mm

Connecting cable - 16 mm², 1 m long, highly flexible; longer cables on request

Distance between towing arm axis and conductor rail sliding surface

– 115 mm

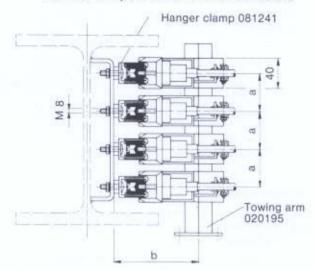
Installation hint:

Please note that the centre line of the current collectors corresponds to the centre line of the conductor rail. The distance between towing arm and conductor rail must be set according to the dimensions shown (see installation examples).

The connecting cables must be highly flexible to guarantee full operational flexibility and must be fixed with the cable clamp so that no tensional stress can be transmitted to the collector head.

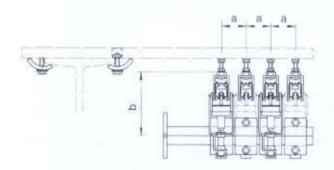
Type			er-no	1000 0-	Weight
	phase c hardware galvanized	onductor hardware stainless steel	earth co hardware galvanized	onductor hardware stainless steel	[kg]
Current Collector 200 Amps vertical operation	081205-2×01	081205 - 2x11	081205-2×02	081205-2×12	2,300
Current Collector 200 Amps vertical operation for transfer points*	081206-2×01	081206-2×11	081206-2×02	081206-2×12	2,520
Current Collector 200 Amps horizontal operation	081207-2×01	081207-2×11	081207-2×02	081207 - 2 x 12	2,370
Current Collector 200 Amps horizontal operation for transfer points*	081208-2×01	081208-2×11	081208-2×02	081208-2×12	2,530

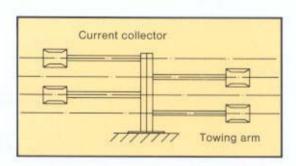
^{*} Current collectors for transfer points are used if the conductor rail system is separated by interlocks, crossing beams etc. These current collectors are equipped with a self-centering device. For these applications pick-up guides have to be used.


INSTALLATION EXAMPLES

STANDARD INSTALLATION OF CURRENT COLLECTORS

Vertical operation of current collectors


Weld-on bracket 020285/020286 Hanger clamp 081243 Support arm 020185/020186


Horizontal operation of current collectors

STAGGERED INSTALLATION OF CURRENT COLLECTORS

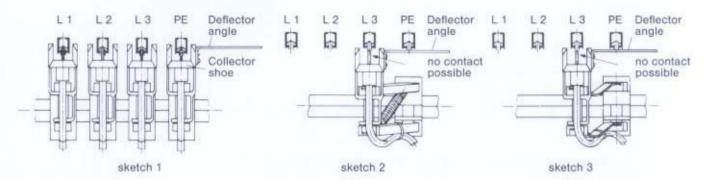
Horizontal and vertical operation of current collectors

For installations without transfer points the current collectors for vertical and horizontal operation can be staggered. In this way the centre distance between two conductor rails is reduced by 10 mm. If current collectors are installed staggered please note that the minimum distance a = 40 mm must be followed at any point of the system and the current collectors are perfectly guided parallely to the conductor rails.

Centre distance between two conductor rails	Standard spacing of current collectors	Staggered spacing of current collectors	Spacing of current collectors for systems with pick-up guides multipole*
Minimum distance a [mm]	50	40	50

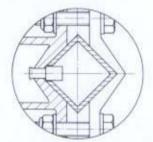
Current collector	b [mm]	Movement in direction of contact [mm]
Spring arm type	135	± 25
Parallel arm type	150	± 50

* see installation hint for pick-up guides


Installation hint:

Please note that the centre line of the current collector is mounted to the centre line of the conductor rail. The distance between towing arm and conductor rail must be set according to the dimension indicated in above table and sketches.

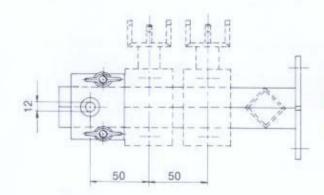
NON-INTERCHANGEABILITY OF EARTH COLLECTOR


To comply with some specifications earth collectors must be protected against accidental interchanging with phase collectors.

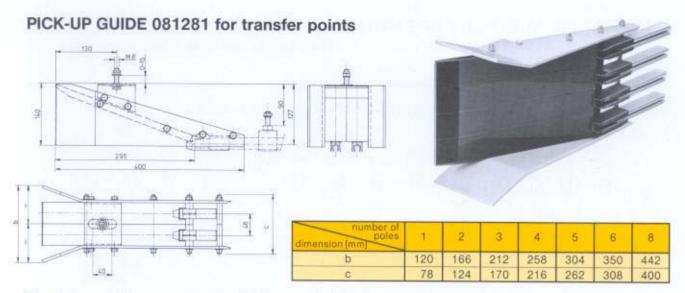
MOUNTING OF EARTH COLLECTOR FOR SYSTEMS WITHOUT PICK-UP GUIDES

The earth conductor (with deflector angle) can only be mounted on the outside. The deflector plate prevents the earth collector being fitted onto a phase conductor.

MOUNTING OF EARTH COLLECTOR FOR SYSTEMS WITH PICK-UP GUIDES


On systems with pick-up guides it is impossible to pass through the pick-up guides with a standard earth collector fitted with deflector angle. Therefore an earth collector for transfer points with a weld-on plug on its mounting bracket is used. The position of the earth collector is fixed by fitting the weld-on plug in a hole which is drilled in the towing arm using the drilling device.

DRILLING DEVICE 08 - W100 - 0206


On systems with pick-up guides a hole has to be drilled in the towing arm 020195 with the drilling device 08-W100-0206 to hold the weld-on plug.

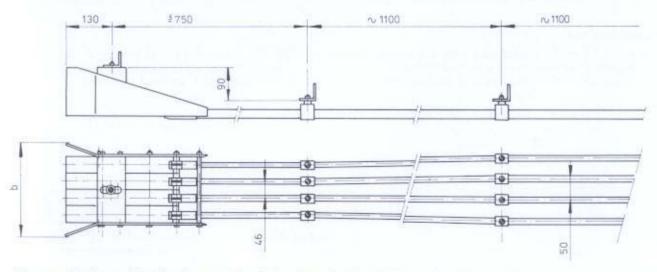
Installation hint:

The required phase collectors are lined up on the towing arm 020195. The centre line of the current collectors corresponds to the centre line of the conductor rails. The outer phase collector is the stop for the drilling device. The bushes of the drilling device must point outwards. In this position the centre distance is 50 mm.

Туре	Order-no	Weight [kg]
Drilling Device	08-W100-0206	0,700

The pick-up guide compensates for ± 25 mm vertical / horizontal misalignment.

For systems with pick-up guides a respective number of current collectors must be installed at a distance which guarantees that sufficient collectors are engaged for the respective current requirement.

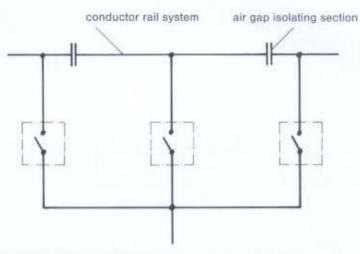

The user has to ensure that the current collectors which are disengaged between pick-up guides must be de-energised and protected against accidental contact.

Type	Order-no			
	hardware galvanized	hardware stainless steel	[kg]	
Pick-up Guide 1-pole	081281 - 11	081281 - 12	0,850	
Pick-up Guide 2-pole	081281 - 21	081281 - 22	1,200	
Pick-up Guide 3-pole	081281 - 31	081281 - 32	1,550	
Pick-up Guide 4-pole	081281 - 41	081281 - 42	1,900	
Pick-up Guide 5-pole	081281 - 51	081281 - 52	2,250	
Pick-up Guide 6-pole	081281-61	081281-62	2,600	
Pick-up Guide 8-pole	081281 - 81	_	2,950	

Installation hint:

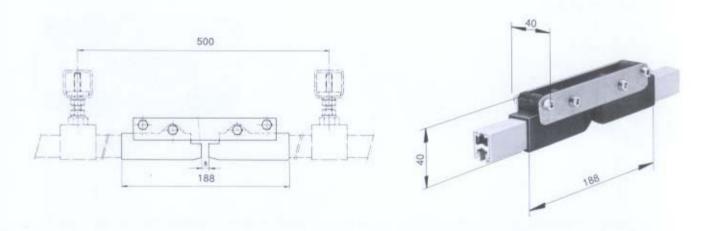
The centre to centre distance between two conductor rails is normally 50 mm. It must be reduced to 46 mm by the hanger clamps next to the pick-up guide to guarantee a proper engagement of the current collectors. The pick-up guide is supplied with end caps. The end caps are pushed on the conductor rails to their end stop with gentle hammer blows. Then the clamping screw is tightened.

SUPPORT SPACING FOR INSTALLATIONS WITH PICK-UP GUIDES


Please note: the earth collector mounting instructions for installations with pick-up guides.

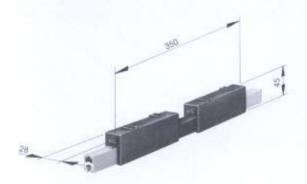
AIR GAP ISOLATING SECTION

for isolation of conductor rails


Air gap isolating sections are required if parts of the system or individual rails are to be de-energized within a conductor rail system. To prevent a voltage bridging by current collectors two air gap isolating sections should be installed.

On installations with air gap isolating sections double current collectors should be used.

AIR GAP ISOLATING SECTION 081294


Type	Ord	ler-no	Weight
1/22/04	hardware galvanized	hardware stainless steel	[kg]
Air Gap Isolating Section	081294-1	081294-2	0,500

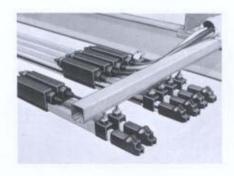
Installation hint:

To guarantee proper current transfer by the current collectors the rail ends must be aligned. The end caps of the air gap isolating section are pushed on the conductor rails to their end stops by gentle hammer blows. The lateral support plates are screwed together with the end caps so that they are braced with the rail at the same time. Two additional hanger clamps (see sketch) should be installed for each air gap isolating section. These are ordered separately.

INSULATING SECTION 081296

view without cover



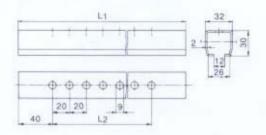

Type	Ord	er-no	Weight
2	hardware galvanized	hardware stainless steel	[kg]
Insulating Section	081296-1	081296-2	0,300

Installation hint:

The insulating section is fitted to the conductor rail system to interrupt the electric circuit and form dead zones. Insulating sections can be installed instead of rail connectors or at any point within the rail section. The rail ends are clamped by the insulating piece and the joint covers are mounted as described in section 'rail connector 081221'.

END CAP 081271

The end caps are used for the protection of rail ends, as transfer caps for systems running through switches, for interlocks and on air gap separating points.


Type	Order-no		
//#/kgas	hardware galvanized	hardware stainless steel	[kg]
End Cap	081271 - 1	081271-2	0,040

Installation hint:

Before mounting the end cap the rail end has to be deburred. The end cap is pushed on to the conductor rail to its end stop with gentle hammer blows. The clamping screw is tightened until the plastic pieces meet. Please note that on transfer points the lateral and vertical misalignment between the end caps is less than 2 mm and the air gap between adjacent end caps is smaller than 10 mm.

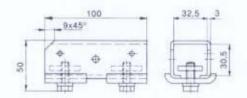
ACCESSORIES

SUPPORT ARM 020185

PERMISSIBLE LOADING

Static values: $Ix = 2,11 \text{ cm}^4$ $Wx = 1,36 \text{ cm}^3$

		/[m]						
	0,25	0,32	0,40	0,50	0,63	0,80	1,00	1,25
F[daN]*	76,0	59,5	47,5	38,0	30,0	24,0	19,0	15,2
f [cm]	0,08	0,13	0,20	0,32	0,50	0,80	1,25	2,23

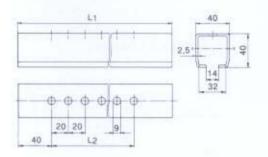

* Calculated with $\sigma = 140 \text{ N/mm}^2$ tension f = corresponding max. deflection

Туре	Order-no	L; [mm]	L ₂	Weight [kg]
	020185-0250	250	200	0,390
	020185-0315	315	260	0,500
	020185-0400	400	340	0,625
Support Arm	020185-0500	500	340	0,780
Support Arm	020185 - 0630	630	340	0,980
	020185-0800	800	340	1,245
	020185 - 1000	1000	340	1,550
	020185 - 1250	1250	340	1,945

Material: steel, zinc galvanized

WELD-ON BRACKET 020285

for support arm 020185


Туре	Order-no	Weight [kg]
Weld-on Bracket	020285	0,420

Material: bracket

- steel, plain

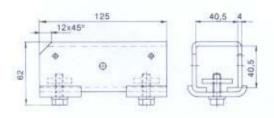
counter plate hardware - steel, galv. - steel, galv.

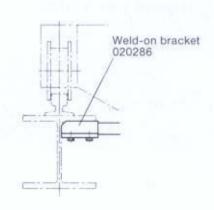
SUPPORT ARM 020186

PERMISSIBLE LOADING

Static values: $Ix = 6.05 \text{ cm}^4$ $Wx = 2.94 \text{ cm}^3$

	/[m]							
	0,25	0,32	0,40	0,50	0,63	0,80	1,00	1,25
F [daN]*	164,5	128,5	103,0	82,5	65,5	51,3	41,0	32,9
f [cm]		0,10			0,40			

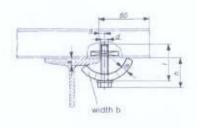

* Calculated with $\sigma = 140 \text{ N/mm}^2$ tension f =corresponding max. deflection


Туре	Order-no	L, [mm]	L ₂ [mm]	Weight [kg]
	020186 - 0250	250	200	0,625
	020186-0315	315	260	0,800
	020186 - 0400	400	340	1,000
Connect Sem	020186 - 0500	500	340	1,250
Support Arm	020186 - 0630	630	340	1,575
	020186 - 0800	800	340	2,000
	020186 - 1000	1000	340	2,500
	020186 - 1250	1250	340	3,125

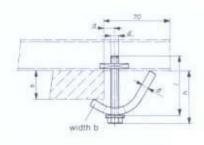
Material: steel, zinc galvanized

WELD-ON BRACKET 020286

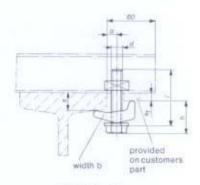
for support arm 020186


Туре	Order-no	Weight [kg]
Weld-on Bracket	020286	0,730

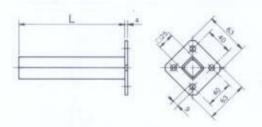
Material: bracket counter plate

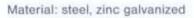

steel, plainsteel, galv.steel, galv.

hardware


GIRDER CLIP 020180

020180-08x36


020180 - 10 020180 - 12


Туре	Order-no	Clamping range range s [mm]	d	/ [mm]	installation high h [mm]	b [mm]	a [mm]	5 ₁ [mm]	Weight [kg]
	020180 - 08	4 - 20	M B	50	31 - 40	30	6	-	0,150
	020180-08×36	18 - 36	M 8	65	42 - 60	30	6	-	0,220
Girder Clip	020180 - 10	6 - 11 11 - 16 16 - 21	M 10	50	35 - 41 41 - 46 46 - 51	32	8	- 5 10	0,170
	020180-12	6 - 14 14 - 22 22 - 30	M 12	60	39 - 47 47 - 55 55 - 63	38	10	- 8 16	0,240

Material: steel, galvanized

TOWING ARM 020195

for current collector

Туре	Order-no	L [mm]	Weight [kg]
Toutes Ass	020195-400	400	0,600
Towing Arm	020195 - 630	630	1,000

INSULATORS

INSULATORS FOR VOLTAGES UP TO 1000 V

for indoor and outdoor installations

Surface leakage path

62 mm

Surface leakage resistance KC: 575 V (CTI)

Breaking strength

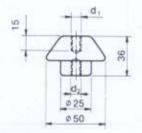
> 350 daN

Ambient temperature

-30°C up to +85°C

Application

These insulators are used for installations with operating voltages up to 1000 V -, in salt laden atmospheres and in extremely dirty conditions, where there is high humidity or conductive dust.


Please consult us for special types used under extreme chemical, higher temperatures or different mounting conditions as well as for voltages over 1000 V.

INSULATOR 080401

with threaded inserts on both sides

Туре	Order-no	d ₁	d ₂	Weight [kg/1000]
Insulator	080401 - 08 x 08	M 8	M 8	90,000

INSULATOR 080402 and 080403

with one stud and one threaded insert

Туре	Orde	d ₁	d ₂	/ ₁ [mm]	Weight [kg/1000]	
	hardware galvanized	hardware stainless steel			frinid	[kg/1000]
Insulator	080402 - 830 × 08	080403 - 830 x 08	M 8	M 8	30	98,000

BENDING DEVICE 081010

Туре	Order-no	Weight [kg]
Bending Device	081010	20,000

All the conductor rails of programme 812 can be bent vertically / horizontally by the bending device 081010 to a minimum bending radius of 2000 mm.

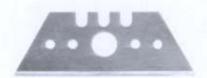
To fabricate bends the bundle of spring steel strips is to fill the conductor rail profile.

When a bending device is ordered steel strips and instructions are supplied.

Reordering spring steel strips:

SPRING STEEL INSERT 081011 complete

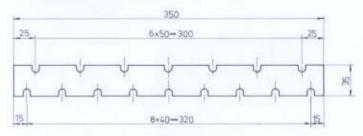
for all conductor rails programme 812



Туре	Order-no	Weight [kg]
Spring Steel Insert	081011	5,000

Reordering cutting blades:

CUTTING BLADE 081012


for insulation cover

Туре	Order-no	Number per unit	Weight [kg]
Cutting Blade	081012	10	0,025

MOUNTING JIG 081045

for setting up hanger clamps on support arm installation

2 mm thick

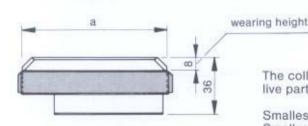
Туре	Order-no	Weight [kg]
Mounting Jig	081045	0,190

CONDUCTIVE GREASE 080021

for aluminium rail connection joints

Туре	Order-no	Weight [kg]
Conductive Grease	080021	0,035

Contents sufficient for approx. 500 connections.


Installation hint:

We recommend the use of conductive grease on the rail joint and power feed points to achieve a good current transfer. The connecting points are cleaned with a steel brush and then spread with a thin layer of **wampfler** conductive grease.

SPARE PARTS

COLLECTOR SHOE 081001

with insulation shroud for 100 Amps, 40 Amps

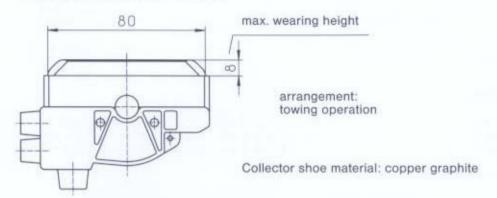
collector brush with insulation

The collector brush is protected by a plastic insulation so that no live parts can be touched by accidental contact.

Smallest bending radius for collector shoe 100 Amps = 1800 mm Smallest bending radius for collector shoe 40 Amps = 1000 mm

Material:

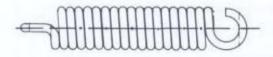
copper graphite


Туре	Order-no	Amps [A]	a [mm]	Weight [kg]
Collector Shoe	081001-11	100	90	0,098
Collector Shoe	081001 - 15	40	63	0,058

Installation hint:

The collector shoe can be changed without demounting the collector because the collector shoe has a push-in contact (not a screwed connection).

COLLECTOR SHOE 081001


for current collector 081209

Type	Order	Weight	
	Phase	Earth	[kg]
Collector shoe 812 80 A Reversing operation	081001 - 12	081001-22	0,090
Collector shoe 812 80 A Towing operation	081001 - 32	081001-42	0,090
Collector shoe 812 80 A without insulation	08-K15	64-0116	0,045

STABILIZING SPRING for current collector head type 081209

Туре	for Current collector	Operation	Order number
Stabilizing	012 081209-022 112 122	Reversing mode	RZ-081 GI
Spring	013 081209-023 113 123	Trailing mode	RZ-0561

ACCESSORIES for current collector head type 081209

Connection cable 081209-1,5 x

Cross-	Order number		Length*	Cable Ø	Amps	Weight
section [mm²]	Phase	Earth	(m)	[mm]	[A]	[kg]
6	081209-1,5 x 06 x 81	081209-1,5×06×92	1,5	6	54	0,088
10	081209-1,5 x 10 x 91	081209-1,5 x 10 x 92	1,5	7	73	0,147
16	081209-1,5x16x81	081209-1,5×16×82	1,5	10	98	0,234

^{*} other lengths and cross sections on request

DE-ICING SYSTEM

On conductor rail installations which are installed outdoor, icing up of the installation can occur depending on the climatic conditions. Icing up of the conductor rail system means possible breakdowns during operation and an increase in wear of the collector shoes and conductor rails.

In these cases we recommend to heating the conductor rail. Furthermore it may be necessary to install such a heating system in factories with very humid conditions.

SELECTION AND LAYOUT

100

90

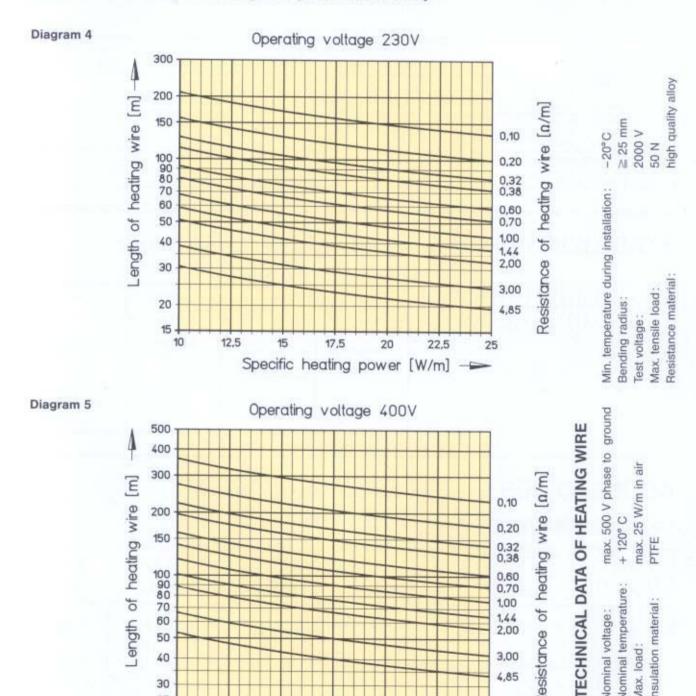
70

60

50

40

30 25 10


12,5

17.5

Specific heating power [W/m]

The power requirement for heating the conductor rail is between 15-25 W/m. The corresponding wire type is selected from diagrams 4 and 5 depending on the conductor rail length and the required heating capacity. If the required heating wire is longer than shown in diagrams 4 and 5 the system must be divided into several

For conductor rail voltages exceeding 400 V please consult factory.

0,32 0,38

0,60

0,70

1,00

1.44

2.00

3,00

4,85

25

22,5

o

Resistance

Nominal temperature

Nominal voltage

nsulation material

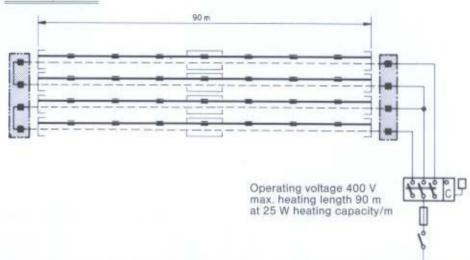
Max. load:

EXAMPLES

Example 1

A 90 m, 4 pole conductor rail system must be heated. Required heating capacity approx. 12,5 – 25 W/m. Operating voltage 400 V.

A heating wire with 0,3 Ω/m at 14,84 W/m heating capacity is selected from diagram 5. 360 m heating wire plus 0,5 m for each pole for connecting purposes is required for a 90 m, 4 pole system. The selected heating wire has 14,84 W/m heating capacity at a conductor rail length of 2 x 90 m. (see wiring diagram 1).


Heating capacity of installation = total length of heating wire x W/m

= 360 m x 14,84 W/m

= 5345,33 W

= 5,345 kW

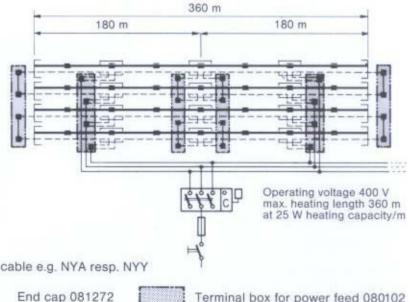
Wiring diagram 1 single feed

Example 2

A 360 m, 4 pole conductor rail system must be heated. Required capacity approx. 12,5 – 25 W/m. Operating voltage 400 V.

It is not possible to heat this length with the available wires, even if the minimum permissible heating capacity of 15 W/m is used. The system must therefore be divided in two sections of 180 m with centre feed. The result is a heating wire with 2×90 m length. A heating wire with $0.3 \, \Omega/m$ at $15.15 \, W/m$ heating capacity is selected from diagram 5. 1440 m heating wire plus 8 m for connecting purposes is required for a 360 m, 4 pole system.

Heating capacity of installation = total length of heating wire x W/m


 $= 1440 \text{ m} \times 15,15 \text{ W/m}$

= 21816 W

= 21,816 kW

Because the system is divided in two sections 2 terminal boxes 080102 for power feed and 4 terminal boxes 080103 for joints are required.

Wiring diagram 2 multiple feed

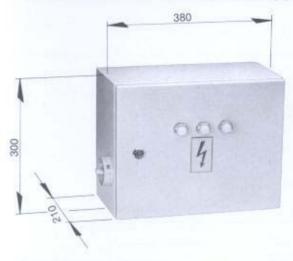
Conductor rail 08121...

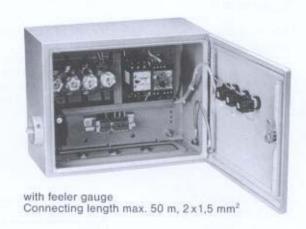
Heating wire 080106

Supply cable and connecting cable e.g. NYA resp. NYY

Terminal point

End cap 081272


Terminal box for power feed 080102


Power feed 081251

Rail connection

Terminal box for joints 080103

TEMPERATURE CONTROL UNIT 080101

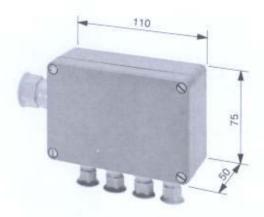
Protection grade IP 54 for indoor and outdoor installations. Nominal voltage 230 V / 400 V. Temperature range -20° C up to $+30^{\circ}$ C. Special types and voltages on request.

Туре	Order-no	Number of	Max. heating capacity from 16 ² / ₃ up to 200 Hz		Weight	
		poles	230 V [kW]	400 V [kW]	[kg]	
Temperature Control Unit —	080101 - 13 080101 - 23	3	7,0 14,5	12,5 25,0	9,000	
	080101 - 14 080101 - 24	4	7,0 14,5	12,5 25,0	9,200	
	080101 - 15 080101 - 25	5	7,0 14,5	12,5 25,0	9,400	
	080101 - 16 080101 - 26	6	7,0 14,5	12,5 25,0	9,600	

HEATING WIRE 080106

Type.	Order-no	Nominal resistance* [Ω/m]	Cable assembly number of wires x Ø wire [mm]	Outside diameter [mm]	Weight [kg/1000 m]
	080106-010	0,10	7 x 0,50	2,7	
	080106-020	0,20	7 x 0,40	2,4	
	080106-032	0,32	7×0,50	2,7	
	080106-038	0,38	7 x 0,45	2,55	
	080106-060	0,60	7 x 0,40	2,4	
Heating Wire	080106-073	0,70	7×0,35	2,25	approx. 8,600
	080106-100	0,976	7×0,30	2,1	
	080106-148	1,44	7 x 0,25	1,95	
	080106-200	2,00	7×0,33	1,8	
	080106-300	3,00	7 x 0,25	1,95	
	080106-485	4,85	7×0,20	1,8	

^{*} The nominal resistance of the heating wires can slightly differ depending on manufacturer.

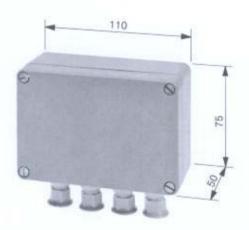

Other resistance values on request. Resistance values can change.

Please note:

When determining the total length of the heating wire an additional length of 0.5 m min. per wire must be ordered for connection purposes and twists in the cable, and 1 pair of "Verbindungsmuffe" 08-L020-0033.

TERMINAL BOX 080102 for power feed

with glands, connectors and accessory


Protection grade: IP 65

Material: Polyester, fibreglass reinforced

Туре	Order-no	Weight [kg]
Terminal Box 3-pole	080102-3	0,300
Terminal Box 4-pole	080102-4	0,310
Terminal Box 5-pole	080102-5	0,320

TERMINAL BOX 080103 for joints

with glands, connectors and accessory



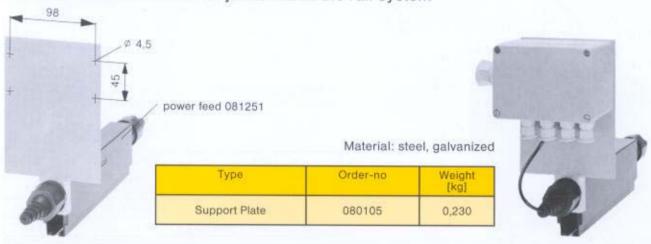
Protection grade: IP 65 Material: Polyester, fibreglass reinforced

Туре	Order-no	Weight [kg]
Terminal Box 3-pole	080103-3	0,290
Terminal Box 4-pole	080103-4	0,300
Terminal Box 5-pole	080103-5	0,310

END CAP 081272

for heating wire entry/exit

Турв	Ord	Weight [kg]	
	hardware galvanized	hardware stainless steel	fwal
End Cap	081272-1	081272-2	0,140


SUPPORT PLATE 080104

for terminal box 080102 for power feed and terminal box 080103 for joints at the rail ends

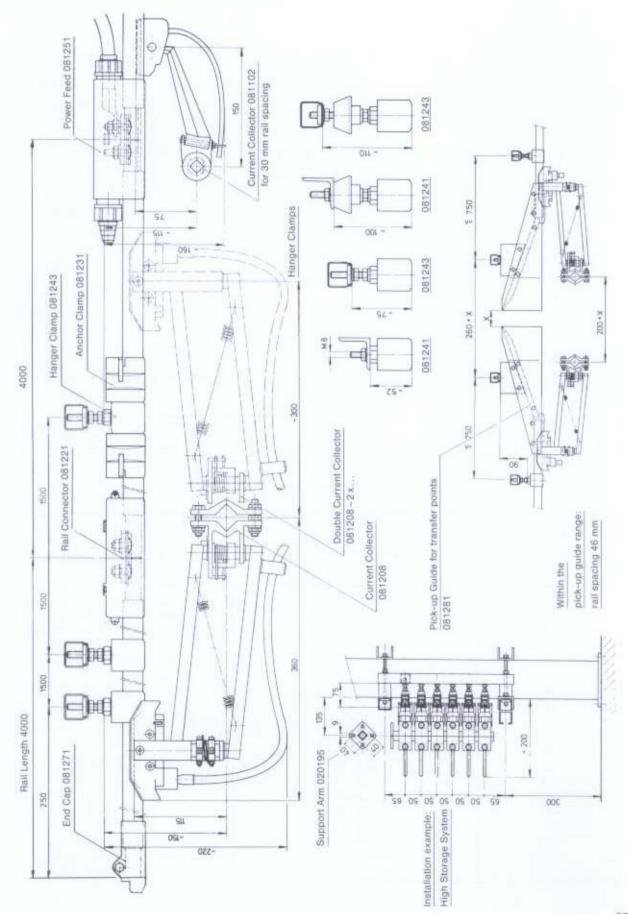
SUPPORT PLATE 080105

for terminal box 080102 for power feed and terminal box 080103 for joints within the rail system

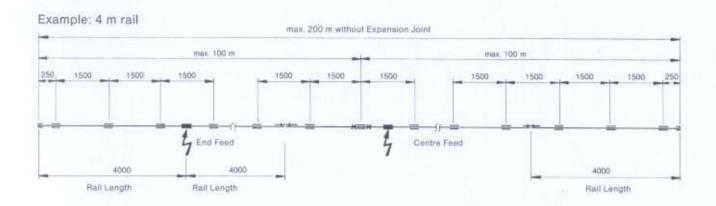
ORDER EXAMPLE

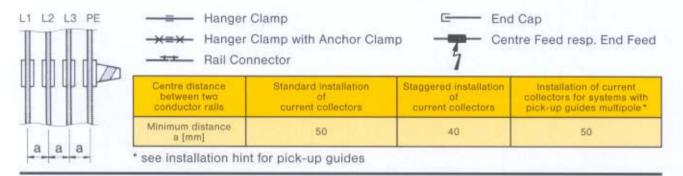
A 180 m, 4 pole conductor rail system must be heated. Operating voltage 400 V, heating capacity approx. 25 W/m with multiple feed. See wiring diagram 2. (1 terminal box is to be provided for each power feed and each joint).

Heating capacity of installation = total heating wire length x W/m = 724 m x 25 W/m = 18 kW


Quantity	Order-no	Description				
1	080101-24	Temperature Control Unit				
724 m	080106-020	Heating Wire				
16	080106-000	"Verbindungsmuffe" for de-icing system (pair				
2	080102 - 4 for power feed	Terminal Box				
4	080103 - 4 for joints	Terminal Box				
2	080104	Support Plate				
4	080105	Support Plate				
8	081251	Power Feed				
8	081271	End Cap				

Installation instructions are enclosed in each consignment!


SYSTEM ARRANGEMENT


PROGRAMME 812

with current collector parallel arm type

CONDUCTOR RAIL ARRANGEMENT

ORDER EXAMPLE

A 55 m, 4 pole, 80 Amps conductor rail system is to be ordered complete with all accessories, current collectors and support arms.

Quantity	Order-no	Description			
39	081211 - 4×11	Conductor Rail »Phase«, 4 m long			
3	081211-3×11	Conductor Rail »Phase«, 3 m long			
13	081211-4x12	Conductor Rail »PE«, 4 m long			
1	081211-3x12	Conductor Rail »PE«, 3 m long			
152	081243-01	Hanger Clamp			
8	081231 - 1	Anchor Clamp			
52	081221-2	Rall Connector			
4	081251 - 2	Power Feed			
4	080051 - 16	Cable Lug 16 mm ²			
8	081271 - 1	End Cap			
3	081205-01	Current Collector »Phase«			
1	081205-02	Current Collector »PE«			
- 有	020195-400	Towing Arm			
38	020185 - 0500	Support Arm			
76	020180-08	Girder Clip			
1	081045	Weld-on Bracket			
1	080021	wampfler Conductive Grease			
- 4	081001 - 11	Collector Shoe (spare part)			

QUESTIONNAIRE

for determining the wampfler-conductor rail system

Programme 812

	of consume											
2. Lengt												
3. Condi	uctor rail ar	rangemer	V	ertical	1000 1110 1210	1,6,9,00	rizontal 🗆					
Phase Earth	er of condu- conductor conductor of conducto			or special	application	ons p	lease enc	lose sket	ch an	d descripti	ion.	
5. Lengt	h of collect	or connec	ting	cable:		_		m				
3 pha Altern	3. Operating voltage: 3 phase current Alternating current Direct current							Hz Hz				
7. Indoo	r installatio	n 🗆	Outo	door insta	llation							
8. Opera	iting condit	ions:	7	domnaco	dust se	arooo	luo ancoc	ata l				_
				dampness x.								
	ent tempera	iture:	ma	X	2.00	mir	1					
10. Duty	cycle:			PROTECTION (ACC)	%							
11. Must	a de-icing s	ystem be	prov	ided?		-						
	er and posi of power fe		wer	ieeu.								
14. Max.	permissible	voltage o	and the same	POWER CO	ONSUMPT	ION	AND NUMI	BER OF C	ONS	JMERS		
Motor data		Crane 1			Crane 2		Crane 3			Crane 4		
	Power consumption kW/PS	Current consumption Amps*		Power consumption kW/PS	Current consumption Amps*	Duty Cycle %	Power consumption kW/PS	Current consumption Amps*		Power consumption kW/PS	Current consumption Amps*	Duty Cycle
Main hoist	Water Control	3,000	1	THE PARTY OF THE P					1		N. M. Weiger	10000
Micro hois	t											
Drive main crab												
Drive auxi iary crab	-											
Crane driv	re											
* Please s	tate the cos	φ-values	of the	e motors f	or I _A and	In.						
Further in	formation for	or determ	ining	:								
	\$6 , E8 , I	1 12 110										

